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Abstract We present a new approach for calculating an-
harmonic corrections to vibrational frequency calculations.
The vibrational wavefunction is modelled using translated
Hermite functions thus allowing anharmonic effects to be
incorporated directly into the wavefunction whilst still retain-
ing the simplicity of the Hermite basis. We combine this
new method with an optimised finite-difference grid for com-
puting the necessary third and fourth nuclear derivatives of
the energy. We compare our combined approach to existing
anharmonic models—vibrational self-consistent field theory
(VSCF), vibrational perturbation theory (VPT), and vibra-
tional configuration interaction theory (VCI)—and find that
it is more cost effective than these alternatives. This makes
our method well-suited to computing anharmonic corrections
for frequencies in medium-sized molecules.

Keywords PES · VPT · TOSH · Anharmonic ·
Vibrational frequencies · Potential energy surface ·
Perturbation · Nuclear vibration theory · Quartic force field

1 Introduction

Infra-red and Raman vibrational spectroscopies are among
the most direct probes of molecular structure available.
Experimental measurements are relatively straightforward,
the techniques are non-destructive, the time-scale can be
extremely short and the sensitivity is high. Perhaps their
main weakness is that they yield too much information. A
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molecule with N atoms and no symmetry possesses 3N − 6
distinct vibrational frequencies and most of these, together
with assorted overtones and combinations, will be present in
the measured spectrum, making the assignment task a formi-
dable one, even for modest values of N . For this and other
reasons, theoretical modelling of vibrational spectra is poten-
tially valuable, particularly for species with unusual struc-
tures or bonding types. The caveat, of course, is that, unless
such calculations are sufficiently accurate, they will simply
add to the confusion.

The vibrational frequencies are obtained by solving the
nuclear Schrödinger wave equation on a Born-Oppenheimer
potential energy surface (PES). This surface, which depends
on the level of theory used to compute the electronic energy,
can be expanded as a Taylor series

E(x) = E(x0) + 1

2!
3N∑

i, j

Hi j xi x j + 1

3!
3N∑

i, j,k

Hi jk xi x j xk

+ 1

4!
3N∑

i, j,k,l

Hi jkl xi x j xk xl + · · · (1)

about a stationary point, x0, where the xi are nuclear dis-
placement coordinates and the H are arrays of derivatives of
the energy with respect to these coordinates. For example,
the second derivative matrix (Hessian) is given by

Hi j = ∂2 E(x)

∂xi∂x j

∣∣∣∣
x=x0

(2)

The harmonic approximation, which forms the foundation of
most vibrational frequency calculations, is obtained by trun-
cating the expansion in Eq. (1) after the second-order terms.
The Schrödinger equation for N nuclei moving in a harmonic
potential is separable and can be solved exactly by diagonalis-
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ing the 3N×3N mass-weighted Hessian [1]. The m = 3N−6
non-zero eigenvalues and associated eigenvectors yield the
harmonic frequencies, ωi , and normal coordinates qi . The
vibrational wavefunctions are characterised by m non-nega-
tive quantum numbers and are the simple products

�n = φn1(q1, ω1)φn2(q2, ω2) · · · φnm (qm, ωm) (3)

where the φn are harmonic oscillator functions

φn(q, ω) =
( √

ω√
π 2nn!

)1/2

Hn(q
√

ω) exp(−ω q2/2) (4)

and Hn(x) is a Hermite polynomial. The vibrational state,
�n has an energy

En =
(

n1 + 1

2

)
ω1 +

(
n2 + 1

2

)
ω2 +· · ·+

(
nm + 1

2

)
ωm

(5)

Several quantum chemistry packages exist that can compute
the required second-derivatives analytically for Hartree–Fock
and density functional calculations. These analytic deriva-
tives are both more accurate and more efficient than finite-
difference methods and allow for the routine computation of
harmonic frequencies of moderately large molecular
systems.

For many qualitative and semi-quantitative purposes, the
harmonic approximation is satisfactory but, with greater com-
puter resources becoming available, going beyond this
approximation has become increasingly feasible and has
developed into an active area of research [2–19]. Unfortu-
nately, when higher terms in the Taylor expansion are retained
the associated Schrödinger equation is no longer separable
and near-exact solutions are difficult to obtain for systems
with more than three or four atoms [20,21]. Nonetheless, it is
possible to devise systematic approaches that begin with the
harmonic approximation and build toward the exact result.
Many of these post-harmonic treatments have analogues in
electronic structure methodology. For example, vibrational
perturbation theory (VPT) [22–24], which treats the higher-
order derivatives of the potential as a perturbation on the
harmonic potential, and nth-order vibrational configuration
interaction, VCI(n) [25], which expands the vibrational
wavefunction in terms of configurations involving up to
n-quanta. The problem with many of these methods is that
their computational cost, particularly the memory require-
ments, scales poorly with m. If anharmonic corrections are
to be applied routinely, efficient and accurate approximations
are required. We address this need in this Paper.

In the following section we introduce a new approach to
incorporating anharmonic effects directly into the wavefunc-
tion based on transition-optimised shifted Hermite (TOSH)

functions. The wavefunction is a product of harmonic basis
functions that have been shifted from their equilibrium posi-
tion, with the magnitude of the shift being determined from
first- and second-order VPT. In Sect. 3 we consider the rel-
ative importance of the third- and fourth-order derivatives
required to model the anharmonic PES. By focussing only on
the derivatives that contribute significantly to the anharmonic
corrections, an efficient finite-difference scheme is developed
that minimises the number of different geometries that need
to be considered. Furthermore, by considering the round-
off and truncation errors from the finite-difference formulae,
a new prescription for the step size is proposed in Sect. 4.
Finally, in Sect. 5, we compare the accuracy and efficiency
of our new approach with existing vibrational theories.

2 Transition-optimised shifted Hermite theory

Our approach is based on VPT, which we now outline briefly.
Using normal coordinates, and retaining up to fourth-order
terms in the expansion of the potential in Eq. 1, the nuclear
Hamiltonian can be written

Ĥ = Ĥ0 + V̂ (6)

where Ĥ0 is the harmonic Hamiltonian

Ĥ0 =
m∑

i

(
−1

2

∂2

∂q2
i

+ ω2
i

2
q2

i

)
(7)

and V̂ contains the anharmonic terms

V̂ = 1

3!
m∑

i, j,k

ηi jkqi q j qk + 1

4!
m∑

i, j,k,l

ηi jklqi q j qkql (8)

where η are the derivatives of the energy with respect to the
normal modes qi . If the anharmonic terms in V̂ are small in
comparison to those in Ĥ0, then they may be treated as a per-
turbation and application of Rayleigh–Schrödinger pertur-
bation theory yields a sequence of Vibrational Perturbation
theories VPTn (n = 1, 2, . . .), that approximate the effects
of V̂ . If Ĥ0 has eigenfunctions �n and energies En given by
Eqs. (3) and (5), then perturbation theory gives

E (1)
n = E (0)

n + 〈�n|V̂ |�n〉

=
∑

i

ω j

(
ni + 1

2

)
+ 1

4!
∑

i

ηi i i i

(
6n2

i + 6ni + 3

4ω2
i

)

+ 6

4!
∑

j �=i

ηi i j j

(
2ni + 1

2ωi

) (
2n j + 1

2ωi

)
(9)

where E (0)
n ≡ En is the zeroth-order (harmonic) energy of

the nth vibrational state. The exact expression for VPT2 is
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significantly more complicated, however from the second
order Rayleigh–Schrödinger expression

E (2)
n = E (1)

n +
∑

k �=n

|〈�n|V̂ |�k〉|2
En − Ek

(10)

it can be seen that the equation is manifestly singular if the
vibrational state n is degenerate and, although this prob-
lem can be overcome through the use of the appropriate
degenerate perturbation theory [19,26–29], the expression
also behaves poorly if the state is nearly degenerate, and
this weakness is more difficult to overcome. This well-docu-
mented shortcoming of VPTn becomes more acute in larger
molecules, where the probability of accidental near-degen-
eracies and near-resonances is high and leads to divergence
of the VPTn expansion. One solution to overcome this prob-
lem is to give the nuclei fictitious masses, thus lifting the
degeneracies [19]. The disadvantage of this approach is that
by breaking the degeneracies the fundamental frequencies no
longer retaining their correct symmetry. Despite these draw-
backs, VPT is computationally more attractive than other
approaches, such as VCI(n), because of its more modest stor-
age requirements and it has been widely used in theoretical
molecular spectroscopy.

The expression for the energy of the i th vibrational level
obtained from second-order perturbation theory is usually
approximated [19,22–24,27,30] as:

Ei =
∑

j

ω j

(
n j + 1

2

)
+

∑

i≤ j

xi j

(
ni + 1

2

) (
n j + 1

2

)

(11)

where, if rotational coupling is ignored, the anharmonic con-
stants xi j are given by

xi j = 1

4ωiω j

(
ηi i j j −

m∑

k

ηi ikη j jk

ω2
k

+
m∑

k

2(ω2
i + ω2

j − ω2
k )η

2
i jk[

(ωi + ω j )2 − ω2
k

] [
(ωi − ω j )2 − ω2

k

]
)

(12)

For most systems, higher order terms in (11) make little
contribution to the energy and the expansion can be trun-
cated after the second-order terms in the quantum numbers
without introducing significant error [31]. Equation (12) also
assumes that terms that are quadratic in the fourth-order
derivatives do not contribute significantly and have therefore
been neglected. The energy of the i th fundamental vibrational
mode is given by:

�Ei = νi = ωi + 1

2

m∑

j

xi j (13)

First-order perturbation theory accounts for the effects of
the perturbation on the unperturbed wavefunction, whereas
second-order perturbation theory begins to model the relax-
ation of the unperturbed wavefunction in the presence of the
perturbation. We now ask a question; can anharmonic effects
be introduced into the wavefunction without resorting to sec-
ond-order perturbation theory? A simple example will dem-
onstrate how this is possible. For a diatomic molecule, the
Hamiltonian with a quartic force field (QFF) can be written:

Ĥ = −1

2

∂2

∂q2 + 1

2
ω2q2 + 1

3!η111q3 + 1

4!η1111q4 (14)

and the zeroth-order wavefunction is given by Eq. (4). If the
origin of this wavefunction is shifted by a small amount, σ ,
the shape will remain the same, but the asymmetry about the
equilibrium geometry can be exploited to allow anharmonic
effects to be incorporated into the wavefunction. The shifted
wavefunction for the ground vibrational state is

φ0 =
(ω

π

) 1
4
e−ω(q−σ)2/2 (15)

and that for the first excited state is

φ1 =
(

4ω3

π

) 1
4

(q − σ) e−ω(q−σ)2/2 (16)

The difference in energy between these vibrational states is

�ETOSH = 〈φ1|Ĥ |φ1〉 − 〈φ0|Ĥ |φ0〉
= ω + η1111

8ω2 + η111σ

2ω
+ η1111σ

2

4ω
(17)

and this may be compared to the energy of the unshifted
wavefunction obtained from first- and second order pertur-
bation theories:

�EVPT1 = ω + η1111

8ω2 (18)

�EVPT2 = ω + η1111

8ω2 − 5η2
111

24ω4 − η2
1111

32ω4 (19)

If we assume σ is small, we can ignore the σ 2 term and by
comparing the coefficients of η111 in the expressions (17) and
(19) we can obtain a value for the shift

σ = − 5

12

η111

ω3 (20)

that is optimal for the 0 → 1 transition. For this reason, we
call (15) and (16) TOSH functions. Using this value for σ for
diatomic systems allows us to obtain an approximation to the
second-order energy from a first-order expression. Note that
we are unable to match the η2

1111 part of the VPT2 energy
expression, however, this term is often neglected and is also
absent from (12).
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For polyatomic molecules, the 0 → 1 transition energy
for the i th mode obtained from using the TOSH wavefunction
in Eq. (9)

�ETOSH
i = ωi + 1

8ωi

∑

j

ηi i j j

ω j
+ 1

2ωi

∑

j

ηi i jσi j

+ 1

4ωi

∑

j,k

ηi i jkσi jσik (21)

where we have allowed for a different shift in each function,
for each vibrational frequency. The corresponding energy
difference from Eqs. (12) and (13) is

�EVPT2
i = ωi + 1

8ωi

∑

j

ηi i j j

ω j
− 1

8ωi

m∑

j=1

m∑

k=1

ηi ikη j jk

ω j ωk
2 + 1

4ωi

×
m∑

j=1

m∑

k=1

(
ω2

i +ω2
j −ω2

k

)
η2

i jk

ω j

[
(ωi −ω j )

2−ω2
k

] [
(ωi +ω j )

2−ω2
k

]

(22)

If, as before, we neglect the terms that are quadratic in the
shifts, then from Eq. (21) we see that σi j/2ωi is the coeffi-
cient of the ηi i j derivatives. Looking for the coefficient of
these derivatives in Eq. (22) and comparing this to σi j/2ωi

we obtain

σi j

2ωi
= −1

8ωiω
2
j

m∑

k=1

ηkk j

ωk
−

(
2 ωi

2 − ω j
2
)

ηi i j

4ω2
i ω

2
j (4ω2

i − ω2
j )

+ ω jηi i j

4ωi
(
(ωi − ω j )2 − ω2

i

) (
(ωi + ω j )2 − ω2

i

) (23)

which can be simplified to

σi j = (δi j − 2)(ωi + ω j )ηi i j

4ωiω
2
j (2ωi + ω j )

−
∑

k

ηkk j

4ωkω
2
j

(24)

The energy obtained using this approach is only an approx-
imation to the VPT2 energy as several terms have been
neglected, in particular the coefficients of the ηi jk terms
cannot, and have not, been matched. However, the TOSH
expression has the advantage that it does not break down
for degenerate systems and it requires only one- and two-
mode derivatives. We present the results of using our TOSH
approach in Sect. 5.

Rather than shifting the origin of the vibrational wavefunc-
tions, other groups have suggested shifting the nuclei from
their equilibrium positions to either the vibrational averaged
or experimental structure, and calculating the derivatives at
this new geometry [32]. This approach is distinct from ours
as we still calculate the derivatives at the equilibrium geome-
try. Studies show [33,34] that the shifted PES with carefully
chosen coordinates can yield a good force field, however,
large-amplitude vibrational motions are likely to be poorly
treated because the higher derivatives can be anomalously

large when evaluated at the non-equilibrium reference geom-
etries.

3 Numerical Derivatives

In order to compute anharmonic vibrational frequencies,
third- and higher-order derivatives of the energy must be
calculated. These derivatives are both difficult and expen-
sive to compute analytically and, therefore, finite-difference
methods are usually used. The optimal strategy for calcu-
lating these numerical derivatives depends on what infor-
mation (energies, gradients, etc.) is available, the relative
costs of computing these data, and also the effects of trunca-
tion and round-off errors. Before developing such a strategy,
it is worth pausing to consider the relative importance of
the types of higher-order derivative that arise in calculating
anharmonic corrections.

Traditionally the expansion of the PES, Eq. (1), is trun-
cated after quartic terms. Higher derivatives can be important
in highly anharmonic systems such as water [35], but the high
cost of computing these derivatives diminishes their value
and the use of a QFF is often considered a useful compro-
mise. However, the derivatives in the QFF are not all equally
important. This is demonstrated in Table 1 which shows the
mean absolute deviations in the vibrational frequencies of the
molecules in the D1 data set (see Table 2) applying full VPT2
(including all terms involving the fourth-order derivatives)
to the B3LYP/6-31G(d) PES. The differences are between
the frequencies calculated using the full QFF (4MR) and
those obtained using various subsets of the derivatives. In this
table we introduce the notations used to describe the various
approximations to the full QFF. The model force fields are
characterised by the different types of derivative used, where
a derivative type is determined by the order of derivative and
how many different indices there are. For example, ηi i i cha-
racterises one type, which is distinct from ηi i j and ηi i i i , (the
restriction i �= j is implicit within our notation).

Table 1 shows that couplings between three and four
modes contribute little to the total anharmonic correction.
Furthermore, neglecting the ηi i i j derivatives in our model
potential increases the error only marginally (1 cm−1) and
so these too can be safely ignored. However, any attempt
to remove further two-mode coupling derivatives (as shown
by the unnamed models in Table 1) increases the error by
approximately 20 cm−1. From this we conclude that the
TOSH force field (TFF), so named because it includes only
those derivatives required by our TOSH method, is the small-
est subset of the QFF which gives acceptable (less than
10 cm−1) errors. The observation that only one- and two-
mode coupling derivatives are required to obtain accurate
anharmonic frequencies has been made previously [2]. This
model of the QFF is simpler than those found elsewhere in the
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Table 1 Notations and derivatives used for various approximations of the QFF: HFF (harmonic force field), TFF (TOSH force field), PFF (derivatives
in the truncated VPT2 force field), CFF (cubic force field), nMR (n mode-coupling representation)

Model Derivatives used Error/cm−1 Number of geometries required

ηi i ηi i i ηi i i i ηi i j ηi i j j ηi i i j ηi jk ηi i jk ηi jkl Energy-only scheme EGH scheme

HFF � 52 1 1

1MR � � � 36 1 + 4m 1 + 2m

� � � � 26 1 + 4m + 4
(m

2

)
1 + 2m

� � � � 29 1 + 4m + 4
(m

2

)
1 + 2m + 2

(m
2

)
a

TFF � � � � � 8 1 + 4m + 4
(m

2

)
1 + 2m + 2

(m
2

)
a

2MR � � � � � � 7 1 + 4m + 12
(m

2

)
1 + 2m + 2

(m
2

)
a

PFF � � � � � � 3 1 + 4m + 4
(m

2

) + 8
(m

3

)
1 + 2m + 2

(m
2

)
b

CFF � � � � 29 1 + 4m + 12
(m

2

) + 8
(m

3

)
1 + 2m + 2

(m
2

)
b

3MR � � � � � � � � 0 1 + 4m + 12
(m

2

) + 8
(m

3

)
1 + 2m + 2

(m
2

)
b

4MR � � � � � � � � � 0 1 + 4m + 12
(m

2

) + 8
(m

3

) + 16
(m

4

)
1 + 2m + 2

(m
2

) + 2
(m

3

)

a only 1 + 2m gradients required
b gradients required at all points
The errors are the mean differences (in cm−1) between the anharmonic frequencies computed using the indicated model and those computed using
the 4MR (≡ full QFF) for molecules in the D1 set of molecules (see Table 2). Also shown is the number of grid points required if the energy-only
and EGH schemes are used to compute the numerical derivatives, where m is the number of modes

Table 2 Lists of the molecules in each of the sets used in this Paper

Data set Molecules

D1 H2CO, CH2Cl2, HCOOH, CH2CH2, CH2CCl2, CH3OH, cis-CHClCHCl, cis-CHFCHF, ClF3, ClNO2, COCl2, COClF, COF2,
CSCl2, CSF2, F2NH, F2SO, HN3, HNCO, HNO3, N2F2, NCl2F, NClF2, OCHCHO, S2F2, SiH2Cl2, SOCl2, trans-CHClCHCl,
trans-CHFCHF

D2 B2H6, C2Cl2, C2N2, cyclo-C2H4NH, cyclo-C2H4O, cyclo-C3H6, CH2CCH2, CH2CCHCl, CH2CCl2, CH2CH2,
CH2CHCHCH2, CH2CHCHO, CH2Cl2, 1CH2, 3CH2, CH3CH2Cl, CH3CH2CN, CH3CH2F, CH3CHO, CH3COCH3, CH3COF,
CH3COOH, CH3NH2, CH3NNCH3, CH3OCH3, CH3OH, CH3SiH3, CH, cis-CHClCHCl, cis-CHFCHF, Cl2O, ClCN, ClF3,
ClNO2, ClNO, ClSN, CO2, COCl2, COClF, COF2, COS, CS2, CSCl2, CSF2, F2, F2NH, F2O, F2SO, FCN, FH, CH2ClCH2Cl,
H2CO, H2, H2O2, H2O, H2S2, H2S, HCCCCH, HCCCH2Cl, HCCCH2F, HCCCl, HCCF, HCCH, HCN, HCO, HCOOCH3,
HCOOH, HN3, HNCO, HNO3, HOCl, HOF, LiF, N2, N2F2, N2O, NCl2F, NClF2, NH, NO2, NSF, O2, O3, OCHCHO, OH,
ONF, PH, S2F2, SCl2, SH, SiH2Cl2, SiH, SO2, SOCl2, trans-CH2ClCH2Cl, trans-CHClCHCl, trans-CHFCHF

literature, where the perturbation force field (PFF) has been
used with VPT2 [19,26–29,36] and two-mode coupling rep-
resentation (2MR) has been frequently used for vibrational
self-consistent field theory (VSCF) [30,37–42].

Computing the 4MR derivatives using energy-only eval-
uations requires evaluating the energy at a number of geom-
etries that scales with the fourth power of the number of
modes:

N 4MR
grid = 1 + 4m + 12

(
m

2

)
+ 8

(
m

3

)
+ 16

(
m

4

)
(25)

where
(m

n

)
is a binomial coefficient. The high cost of com-

puting the 4MR surface, and the small contribution from
three- and four-mode coupling derivatives, makes restricting
the force field to one- and two-mode coupling derivatives
an attractive proposition. The necessary derivatives for this
two-mode representation can be computed via the following

finite-difference scheme:

ηi i i = 1

2h3

(−E−2,0 + 2E−1,0 − 2E1,0 + E2,0
)

+h2

4
η(5,0) + · · · (26)

ηi i j = 1

2h3

(
2E0,−1 − 2E0,1 − E−1,−1 + E−1,1

−E1,−1+E1,1
)+ h2

12

(
2η(2,3)+η(4,1)

)
+· · · (27)

ηi i i i = 1

h4

(
6E0,0 + E−2,0 − 4E−1,0 − 4E1,0 + E2,0

)

+h2

6
η(6,0) + · · · (28)

ηi i i j = 1

4h4

(
E−2,−1 − E−2,1 − 2E−1,−1 + 2E−1,1
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+2E1,−1 − 2E1,1 − E2,−1 + E2,1
)

+h2

12

(
2η(3,3) + 3η(5,1)

)
+ · · · (29)

ηi i j j = 1

h4

(
4E0,0 − 2E0,−1 − 2E0,1 − 2E−1,0 + E−1,−1

−E−1,1 − 2E1,0 + E1,−1 + E1,1
)

+h2

12

(
η(2,4) + η(4,2)

)
+ · · · (30)

where η(a,b) is the mixed derivative of order a and b in the
i th and j th normal mode, respectively, and Ec,d is the energy
calculated at the point x0 + c h qi + d h q j . The number of
energy evaluations required for this reduced representation
scales quadratically with m:

N 2MR
energy = 1 + 4m + 12

(
m

2

)
(31)

Around two thirds of these points are required only for the
ηi i i j derivatives and, if these derivatives are also neglected,
a further reduction in the number of grid points is possible.
To reduce the number of grid points still further, we must
introduce additional information at some of the geometries.
If we compute the gradient of the energy at the displacements
(±h, 0) and (0,±h) and compute both the gradient and Hes-
sian (which are available from the harmonic frequency cal-
culation) at the stationary point, (0, 0), then the following
scheme, truncated before the O(h2) terms, can be used to
compute all the two-mode derivatives:

ηi i i = 1

h2

(
E (1,0)

−1,0 − 2E (1,0)
0,0 + E (1,0)

1,0

)
+ h2

12
η(5,0) + · · ·

(32)

ηi i j = 1

h2

(
E (0,1)

−1,0 − 2E (0,1)
0,0 + E (0,1)

1,0

)
+ h2

12
η(4,1) + · · ·

(33)

ηi i i i = 3

h3

(
E (1,0)

1,0 − 2hE (2,0)
0,0 − E (1,0)

−1,0

)
+ h2

20
η(6,0) + · · ·

(34)

ηi i i j = 3

h3

(
E (0,1)

1,0 − E (0,1)
−1,0

)
+ h2

20
η(5,1) + · · · (35)

ηi i j j = −1

2h4

(
8E0,0 − 4E−1,−1 − 4E1,1 − hE (0,1)

0,−1

+ hE (0,1)
0,1 − 4hE (0,1)

−1,0 + 4hE (0,1)
1,0 + 2h2 E (0,2)

0,0

− 4hE (1,0)
0,−1 + 4hE (1,0)

0,1 − hE (1,0)
−1,0 + hE (1,0)

1,0

+ 2h2 E (2,0)
0,0

)
+ h2

360

(
η(0,6) + 30η(2,4) + 40η(3,3)

+ 30η(4,2) + η(6,0)
)

+ · · · (36)

Note that Eqs. (35) and (36) make use of the fact that the ηi j

derivatives are identically zero, which is a consequence of the

Fig. 1 Grid points used for constructing the TFF. Solid black points
points are those used in the EGH method, circled points indicate the
additional points required by Yagi’s method [2]

orthogonality of the normal modes. Note also that Eqs. (32)
and (33) involve the gradient of the energy at the station-
ary point. Although these gradients should be zero, they can
have small values bounded by the convergence threshold of
the geometry optimisation procedure, and these residual val-
ues should be taken into account to minimise error in the
finite-difference scheme. Because this new scheme combines
energy, gradient, and Hessian information, we call it the EGH
method. Using these new formulae, (32)–(36), the two-mode
derivatives can be obtained from the following number of
geometries:

N 2MR
EGH = 1 + 2m + 2

(
m

2

)
(37)

which is approximately one sixth of the number required by
the energy-only approach. In addition to the energy evalu-
ations, gradient calculations are also required at 1 + 2m of
these points, but these typically take less time than the self-
consistent field calculation required to compute the energy at
the same geometry. The EGH philosophy can also be applied
to the three- and four-mode coupling derivatives to reduce the
number of geometries that need to be considered for the 4MR
force field. We defer the formulae for these derivatives to the
Appendix.

The EGH scheme can be compared to that of Yagi et al.
[2] who use finite-difference formulae similar to (26)–(30)
except that theηi i i andηi i i j derivatives are calculated by step-
ping out three, rather than two, units. Their approach requires
only an additional 2m points over and above those required
for the scheme embodied in Eqs. (26)–(30). Figure 1 illus-
trates which points are needed for constructing the two-mode
derivatives using these two finite-difference schemes. The
EGH method uses only the solid black points whereas Yagi’s
method requires these and the additional circled points.

The efficiency of the EGH method can be compared to
other approaches that use only one type of derivative infor-
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mation. In Table 3 the timings per point and number of points
required for energy-only, gradient-only, Hessian-only and
EGH finite-difference schemes are shown for the C1 – C7

linear alkanes. For the TFF our EGH scheme is the most effi-
cient for systems smaller than heptane. EGH becomes more
expensive than the Hessian approach for larger systems as
the number of points required scales quadratically with the
number of modes, whereas the number of points required
using the Hessian approach scales only linearly with the num-
ber of modes. For the 4MR the EGH scheme is always the
cheapest option for these alkanes, but for larger systems the
Hessian approach will eventually win as for the 4MR sur-
face it requires only a quadratic number of geometries versus
the cubic number required by EGH. These conclusions are
only valid for the relatively modest 6-31G(d) basis set. For
larger bases, particularly those with higher angular momen-
tum functions, the cost of computing the second derivatives
required for the Hessians rises rapidly and the EGH scheme
will be competitive for larger systems.

One aspect of the EGH approach that we have not fully
investigated is the possibility of introducing cutoffs when
calculating the TFF. Because a maximum of two modes are
coupled in this force field, the derivatives would not have to
be calculated if, for example, the two modes were well sep-
arated spatially. These cutoffs could be used to reduce the
number of geometries required to compute the TFF using
EGH. No such cutoffs can be used with the Hessian-only
approach as each displacement is in the direction of only a
single normal mode in this force field.

4 Step size selection

The accuracy of finite-difference formulae depends on both
the step size and the highest-order derivative information
used. Various step sizes have been suggested in the literature
which are either fixed or chosen adaptively based on local
information about the PES. For example, if internal coordi-
nates are used and analytical third derivatives are available,
Császár [32] suggests using 0.01 a0 to determine the fourth
derivatives numerically. For analytical second derivatives,
Császár [32] propose using 0.02 a0 to determine the fourth
derivatives whilst Åstrand [43] recommends 0.001 a0 for
computing the third derivatives. If analytical first derivatives
are available, Császár [32] suggests 0.02 a0 for fourth deriv-
atives. Meanwhile, Åstrand [43] advocates 0.0075 a0 for cal-
culating the cubic force field from analytical first derivatives.
If only single-point energy calculations are feasible, Császár
[32] suggests using 0.04 a0 for calculating numerical fourth
derivatives.

Adaptive step sizes have also been considered, and these
are usually based on information about the curvature of the
PES at the equilibrium geometry. For example, Barone

proposed the following expression [19]:

�qi =
√

�E (2)

2πc ωi
(38)

where �E (2) is the change in the quadratic approximation
of the energy. This expression typically yields step sizes
in the range 0.006–0.02 a0. Burcl [18] suggested the step
size should be chosen to ensure a increase in the potential
energy of 1 mEh , assuming the convergence threshold of the
electronic structure calculation is 10−8Eh , whilst Yagi [2]
assumed the step size is proportional to the square-root of
the harmonic frequencies, and proposed the dimensionless
step size

δyi =
√

wi

h̄
qi (39)

where wi is the angular frequency. Later, in the same paper,
the authors observe that the use of this equation is not always
possible because of numerical problems, and adopt a uniform
value of δy = 0.5 for all modes. This corresponds to a step
size of approximately 0.12a0 for the bending mode in water.
Boese et al. [44] considered several strategies, similar to those
above, for determining the step size for DFT calculations.
They compared the calculated frequencies using both fixed
and variable step sizes with values obtained using Richard-
son extrapolation and favoured the use of a variable step size
that depends on both the reduced mass, µi , and harmonic
frequency:

δyi ∝
√

µi

ωi
(40)

The plentitude of suggested step sizes is because the
numerical derivatives must be computed using finite-
precision values, a factor which is curiously absent in the
above recommendations. The total error associated with
numerical finite-difference methods consists of truncation
error, which arises from ignoring higher derivatives in the
Taylor series expansion, and round-off error, which depends
on the accuracy threshold of the computed molecular prop-
erty (energy, gradient, etc.). However, because the finite-
difference schemes involve differences of these quantities,
the effects of cancellation must also be taken into account.

The EGH formula for the ηi i i derivatives can be rewritten:

ηi i i = 1

h2

(
E (1,0)

−1,0 − E (1,0)
0,0

)
+ 1

h2

(
E (1,0)

1,0 − E (1,0)
0,0

)

+ h2

12
η(5,0) + · · · (41)

The truncation error is dominated by the leading order term
which, if we assume the fifth-order derivatives are O(1), is
h2/12. The round-off error associated with each of the terms
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Table 3 Timings for calculations required to generate the TFF and the 4MR derivatives at the B3LYP/6-31G(d) level of theory using energy-only
gradient-only, Hessian-only and the EGH scheme

Molecule Methane Ethane Propane Butane Pentane Hexane Heptane

Atoms 5 8 11 14 17 20 23

Modes 9 18 27 36 45 54 63

Time for single point calculation (s) using the B3LYP/6-31G(d)a

Energy 0.89 2.41 6.80 13.31 28.70 44.44 62.60

Gradient 0.32 0.88 2.95 6.36 12.16 19.25 28.49

Hessian 10.75 51.58 167.34 382.25 733.43 1229.04 1852.94

Number of grid points needed for the TFF

Energy 181 685 1513 2665 4141 5941 8065

Gradient 181 685 1513 2665 4141 5941 8065

Hessian 19 37 55 73 91 109 127

EGH 91 343 757 1333 2071 2971 4033

Total time required for the TFF (days)

Energy 0.002 0.019 0.119 0.411 1.376 3.056 5.843

Gradient 0.003 0.026 0.171 0.607 1.958 4.379 8.503

Hessian 0.003 0.023 0.111 0.334 0.803 1.607 2.816

EGH 0.001 0.011 0.063 0.215 0.709 1.567 2.986

Number of grid points needed for 4MR

Energy 3157 57397 308521 1007305 2509501 5275837 9872017

Gradient 853 7213 24913 59785 117661 204373 325753

Hessian 91 343 757 1333 2071 2971 4033

EGH 259 1975 6607 15613 30451 52579 83455

Total time required for the 4MR (days)

Energy 0.033 1.601 24.282 155.176 833.596 2713.640 7152.641

Gradient 0.012 0.275 2.811 13.611 55.644 150.654 343.436

Hessian 0.012 0.214 1.525 6.103 18.268 43.791 89.414

EGH 0.004 0.076 0.748 3.559 14.409 38.773 88.007

a These calculations were run on a 1.6 Ghz Itanium2 machine

in parentheses is 2εG where εG is the precision of the gradi-
ent information. The cancellation error can be estimated by
considering a one-sided finite-difference expression for the
second derivative

ηi i = 1

h

(
E (1,0)

0,0 − E (1,0)
−1,0

)
+ h

2
η(3,0) + · · · (42)

If we assume the ηi i terms are O(1), then it follows that
each of the terms in parentheses in (41) is O(h) and there-
fore | log(h)| digits of precision are lost through cancellation.
This gives an effective error of εG/h for the terms in paren-
theses and results in the following expression for the total
error that must be minimised with respect to the step size h

δi i i = 4εG

h3 + h2

12
(43)

Of course, each of the EGH formulae has different round-
off and truncation errors, and will therefore have different

optimal step sizes. In practice it is not possible to use more
than one step size to compute the derivatives and a com-
promise must be made. Figure 2 shows the behaviour of the
total error in each of the EGH formulae as a function of the
step size, h. From this plot it is clear that the largest error is
incurred by the ηi i j j derivatives. If we wish to minimise the
maximum error in our derivatives, then we must choose h to
minimise the error in Eq. (36), which is given by

δi i j j = 8εE

h4 + 10εG

h4 + 2εH

h2 + 17h2

60
(44)

where εE and εH are the precisions of the the energy and
Hessian information, respectively, and where we have
assumed the sixth-order derivatives are all O(1). Solving
this equation with the estimates εE = 10−11 and εG = εH =
10−8 yields an optimal step size of 0.1a0 for the EGH scheme.
If we assume εE 	 εG, then an approximate step size can
be obtained from the simplified expression 2 6

√
εG. Although

some of the adaptive step sizes are as large as our value, most
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δ
δ
δ
δ

Fig. 2 Total error estimates for computing the various derivatives via
the EGH scheme as a function of the step size (εE = 10−11, εG = εH =
10−8). Note that the error function for the ηi i j derivatives is the same
as that for ηi i i , and the error functions for ηi i i i and ηi i i j only differ by
6εHh−2 and appear indistinguishable on this plot

recommendations are smaller. The reason our value, which
has been optimised for the EGH scheme, is larger is because
of the use of gradient information in the formulae. Because
the gradients are calculated close to a stationary point, they
are very small and we therefore have to step out further to
reduce the cancellation error.

5 Results

The TOSH method, (21), and the EGH formulae, (32)–(36),
for computing third- and forth-order derivatives have been
implemented within the Q- Chem 3.0 package [45], which
was used to generate the TOSH, VPT2 and VCI results in
this Section. All derivatives were calculated using the EGH
expressions with the recommended step size of 0.1a0. The
VSCF results were obtained from the Gamess [46] package
using the default step size, which is based on the harmonic
frequency [see Eq. (40)].

In order to compare the TOSH approach with other molec-
ular vibrational theories (MVT), we used high-level VCI
rather than experimental values as our ‘exact’ results. This
isolates the errors due to the MVT from those due to the level
of electronic structure theory, size of the basis set, accuracy
of derivatives, and, in the case of DFT calculations, quality
of the quadrature grid. VCI(n) calculations (n = 1, . . . , 7)
were performed on all the tri- and tetra-atomic systems in
the set considered by Scott et al. [47] using the HF/STO-3G
PESs. Higher levels of VCI theory were not considered due
to their prohibitive memory requirements for the tetra-atomic
systems. In the case of HCN, H2O2, H2S2, HCCCl, HCCF,
HCCH, HNCO and SO3 the contribution from seven-quanta
configurations was greater than 5 cm−1 and the VCI calcu-
lations were deemed not to have converged and the systems

removed from our set. The HCO and NO2 radicals were also
deleted as we encountered SCF convergence problems when
trying to compute the VSCF results. The remaining systems
are listed in Table 4, which shows the mean absolute devia-
tions between the anharmonic shifts computed using VCI(7)
and various levels of vibrational theory. The results have been
averaged over all the modes in each molecule.

The performances of the TOSH, VPT2 and VSCF methods
are strikingly similar both from an overall perspective, where
they all agree to within 10 cm−1 of the VCI(7) results, and on
an individual molecule basis, where their successes and fail-
ures tend to mirror one another. The molecules for which the
performance of these methods is the poorest, H2CO, H2O,
NH3 and PH3, all have large anharmonic corrections which,
on closer inspection of the individual modes, arise from of the
X–H stretches in these systems. TOSH is based on VPT2 the-
ory and, therefore, it is unsurprising to see similar results for
these methods. Notable exceptions include COCl2 and COF2

whose VPT2 results are adversely affected by the Fermi res-
onances which occur at this level of theory. For COCl2, the
C–O stretch (2,130 cm−1) is approximately twice the asym-
metric stretching mode (1,061 cm−1) and for COF2, the C–O
stretch (2,168 cm−1) is approximately twice the symmetric
stretching mode (1,075 cm−1). TOSH is unaffected by these
resonances and out-performs VPT2 for these two systems
with average errors of 22 and 12 cm−1, respectively. The
error for the TOSH results is never more than 10 cm−1 larger
than the VPT2 results, with the worst relative performance
occurring for NH3. We note that this system has the largest
anharmonic corrections and also has one of the most slowly
converging VCI series in the table.

The total cost of computing the anharmonic corrections is
dominated by the cost of computing the force field which,
in turn, depends on the efficiency of the finite-difference
scheme and how efficiently the program can compute the
energies and/or gradients and second derivatives. Using the
EGH expressions for the derivatives, the PFF is approxi-
mately twice as expensive to compute as the TFF, making
TOSH a cost-effective alternative to VPT2 theory. The 4MR
force field is a factor of m more expensive than the PFF,
where m is the number of modes in the molecule.

The VCI results highlight the importance of avoiding odd
low-levels of theory. VCI(1) allows mixing and lowering
of the energy for the first excited state, but not the ground
state, an unbalanced situation that results in an error that
is worse than even the harmonic approximation. VCI(3) is
similarly unbalanced and has an error larger than VCI(2),
but beyond this the effects of parity are less significant. As
mentioned, the VCI(n) series for several molecules did not
converge by n = 7 and it is worth stressing that the con-
vergence of the VCI series is not guaranteed on a QFF. In
fact many molecular quartic potentials are unbounded and
therefore only exhibit pseudo-solutions whose existence is
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Table 4 Mean absolute deviations (cm−1) from VCI(7) in the vibrational modes using different levels of molecular vibrational theory

Force Field HFF TFF PFF 4MR

MVT Harmonic TOSH VPT2 VSCF PT2-VSCF CI-VSCF VCI(1) VCI(2) VCI(3) VCI(4) VCI(5) VCI(6)

AlCl3 3 1 1 2 1 1 3 1 1 0 0 0

BF3 10 1 0 2 1 3 23 3 5 0 0 0

C2Cl2 9 2 1 3 1 8 7 4 11 1 0 0

C2N2 15 10 3 11 9 22 29 17 33 5 1 1
1CH2 63 13 10 10 12 11 152 15 21 3 0 0
3CH2 73 12 12 8 13 15 154 21 30 4 1 0

CO2 6 3 1 5 0 7 19 6 10 1 0 0

COCl2 16 7 29 7 22 14 9 10 7 1 0 0

COClF 8 3 0 3 2 3 17 4 6 1 0 0

COF2 19 4 16 4 4 5 20 4 7 5 0 0

COS 9 8 6 8 1 7 21 6 10 1 0 0

CS2 4 3 1 4 0 3 12 2 3 0 0 0

CSCl2 20 1 0 1 0 1 11 1 3 0 0 0

CSF2 6 1 0 2 0 3 17 2 4 0 0 0

Cl2O 10 1 0 1 0 1 12 1 2 0 0 0

ClCN 9 7 3 10 2 12 22 10 17 3 1 0

ClF3 19 1 0 1 0 2 18 2 3 0 0 0

ClNO 13 2 0 2 1 1 21 3 5 0 0 0

ClNO2 6 3 0 4 1 6 32 5 8 1 0 0

ClSN 8 1 0 1 1 1 14 1 3 0 0 0

F2NH 43 23 19 22 11 23 49 18 26 5 1 0

F2O 10 2 0 2 0 2 23 2 3 0 0 0

F2SO 8 2 2 1 1 2 27 3 4 1 0 0

FCN 12 5 1 6 1 7 10 6 11 1 0 0

H2CO 46 16 7 16 15 18 79 17 29 4 0 0

H2O 97 17 14 14 18 16 221 23 30 5 0 0

H2S 53 8 4 6 7 8 133 15 18 3 0 0

HN3 63 9 15 11 13 23 91 34 45 13 5 3

HOCl 51 14 4 15 5 8 84 17 25 4 0 0

HOF 51 13 4 13 4 6 94 15 23 3 0 0

N2F2 10 2 0 2 1 3 21 2 5 0 0 0

N2O 32 4 4 5 1 9 48 17 18 4 1 0

NCl2F 5 2 2 2 2 3 11 2 3 0 0 0

NClF2 6 1 0 2 0 2 14 2 3 0 0 0

NF3 7 1 0 2 1 3 18 2 4 0 0 0

NH3 111 27 17 30 13 38 188 37 49 12 3 2

NSF 5 0 0 0 0 0 15 1 2 0 0 0

O3 35 8 2 9 0 6 57 9 12 2 0 0

ONF 12 1 0 1 1 1 30 3 4 0 0 0

PCl3 2 1 0 1 0 1 6 1 1 0 0 0

PF3 4 1 1 1 1 2 10 1 2 0 0 0

PH3 81 16 15 40 28 43 108 20 23 4 1 0

S2F2 4 1 0 2 1 3 6 2 5 0 0 0

SCl2 3 1 0 1 0 1 7 1 1 0 0 0

SO2 18 3 1 4 0 3 28 4 5 1 0 0
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Table 4 continued

Force Field HFF TFF PFF 4MR

MVT Harmonic TOSH VPT2 VSCF PT2-VSCF CI-VSCF VCI(1) VCI(2) VCI(3) VCI(4) VCI(5) VCI(6)

SOCl2 12 2 2 2 1 2 21 4 7 1 0 0

Average 22.5 5.6 4.6 6.7 4.5 8.3 39.4 8.0 12.0 2.1 0.4 0.22

All results are derived from a HF/STO-3G PES

Fig. 3 Cross section of the STO-3G PES for the H2O along the bend-
ing normal coordinate. The energy is given in wavenumbers and the
displacement is in atomic units. The dots indicate the exact PES and the
solid line is the 4MR approximation

due to the incompleteness of the basis used to expand the
nuclear wavefunction. This is made clearer by Fig. 3 which
shows a cross section of the HF/STO-3G PES for the water
molecule taken along the bending mode. The singularity in
the exact PES occurs when the hydrogen atoms coalesce. The
lack of symmetry about this point is because the cross section
is taken along the normal coordinate and not the curvilinear
coordinate associated with the exact motion of the nuclei.
The plot shows that the PES is being accurately modelled
around the equilibrium geometry (δq = 0) and will there-
fore yield accurate low-lying vibrational states. However, the
height of the artifactual barrier seen around δq ≈ 2.3 is only
40,000 cm−1 and is thus only able to bind approximately 20
vibrational levels. For this system, the VCI(n) series appears
to converge by n = 7 as the unphysical parts of the PES are
not sampled. Nevertheless, it is clear that the VCI series can-
not converge for this potential as more quanta are included.
For the deleted systems the picture is similar because in all
these systems there exist directions along which the poten-
tial is only pseudo-bound. For example, although we did not
perform a comprehensive search, were able to find barrier
heights on the QFF of around 14,000 cm−1 for the HCN mol-
ecule. With frequencies as high as 3,900 cm−1 in this system,
it is clear that lower orders of VCI will exhibit problems.

To gauge the ability of TOSH to predict experimental
frequencies, we considered the 97 molecules in the D2 set

listed in Table 2. This set is based on that of Scott [47],
but does not include systems with a C3 rotation axis. These
systems were excluded because the octahedral symmetry of
the DFT quadrature grids yields optimised structures that
have the incorrect point group symmetry [48]. Harmonic,
TOSH and VPT2 frequencies were computed using PESs
obtained using B3LYP/6-31G(d) and the SG-1[48] quad-
rature grid, and comparisons made with the experimental
values. Figure 4 shows the distribution of errors for each
of the three methods. Note that we use a logarithmic scale
for the error values and include an enlargement of the 398–
1,585 cm−1 region to show the few systems with very large
errors. The mean error for the harmonic approximation is
58 cm−1 and both TOSH and VPT2 are able to improve on
this value significantly with mean errors of 38 and 39 cm−1,
respectively. What can not be seen from the plot is that all
three methods have a tendency to overestimate the true fre-
quencies. Although the mean errors for TOSH and VPT2 are
similar, Fig. 4 clearly shows they have different distributions
with most of the VPT2 errors less than those of TOSH, but
with a few outlying errors where the method has failed cata-
strophically. These catastrophic errors arise because of Fermi
resonances and give the VPT2 distribution a long upper tail.
The VPT2 errors are as large as 1,452 cm−1, which occurs
for the CH2 twisting mode in CH3CH2F. This mode has a
harmonic frequency of 1,311.72 cm−1 and it resonates with
the CCF deformation (ω = 406.41 cm−1) and CF stretch
(ω = 905.18 cm−1) modes. The sum of these last two modes
is 1,311.59 cm−1 and combines with the CH2 twisting mode
to give a small denominator in the last term in Eq. (22). TOSH
does not suffer the same problems with resonant frequencies
and all the errors are less than 270 cm−1.

6 Conclusion

We have presented a computationally efficient approach for
computing anharmonic corrections to vibrational frequencies.
By shifting the centre of the basis functions used to expand
the nuclear wavefunction, it is possible to incorporate anhar-
monic effects directly into the zeroth-order wavefunction
without having to resort to expensive configuration interac-
tion expansions. For PESs generated at the B3LYP/6-31G(d)
level of theory, the performance of TOSH is only slightly
inferior to VPT2, but it is at least a factor of two cheaper,
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Fig. 4 Simplified distributions
of errors between experimental
and calculated frequencies for
molecules in the D2 set (see
Table 2) using the
B3LYP/6-31G(d) PES

depending on the finite-difference scheme used to compute
the higher-order derivatives. Furthermore, because the TOSH
energy expression is based on first-order perturbation the-
ory, it does not suffer from the problems associated with
Fermi resonances, which plague the VPT2 approach. We
have coupled the TOSH method with an optimised finite-
difference scheme, EGH, which computes only the most
important third- and fourth-order derivatives. By judicious
use of energy, gradient and Hessian information, the num-
ber of different geometries that need to be considered when
computing the QFF can be significantly reduced, thus low-
ering the cost of the most expensive aspect of computing
anharmonic vibrational frequencies.
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Appendix

The three-mode coupling derivatives, ηi jk and ηi i jk can be
obtained using the same number of geometries as the two-
mode EGH method, except that the gradient of the energy
must be computed at all the non-axial points. Thus, a total of

N 3MR
EGH = 1 + 2m + 2

(
m

2

)
(45)

energy and gradient calculations are required, in addition to
the single Hessian calculation. The following scheme can be
used to compute these three-mode derivatives:

ηi jk = 1

2h2

(
2 E (1,0,0)

0,0,0 − E (1,0,0)
0,0,−1 − E (1,0,0)

0,0,1 − E (1,0,0)
0,−1,0

+ E (1,0,0)
0,−1,−1 − E (1,0,0)

0,1,0 + E (1,0,0)
0,1,1

)

+ h2

12

(
2η(1,1,3) + 3η(1,2,2) + 2η(1,3,1)

)
+ · · · (46)

ηi i jk = 1

2h3

(
E (0,0,1)

−1,−1,0 − E (0,0,1)
−1,0,0 − E (0,0,1)

0,−1,0 + E (0,0,1)
0,1,0

+ E (0,0,1)
1,0,0 − E (0,0,1)

1,1,0 + E (0,1,0)
−1,0,−1 − E (0,1,0)

−1,0,0

− E (0,1,0)
0,0,−1+E (0,1,0)

0,0,1 +E (0,1,0)
1,0,0 −E (0,1,0)

1,0,1 −E (1,0,0)
0,−1,−1

+ E (1,0,0)
0,−1,0 +E (1,0,0)

0,0,−1 −E (1,0,0)
0,0,1 −E (1,0,0)

0,1,0 +E (1,0,0)
0,1,1

)

+ h2

12

(
η(1,2,3) + η(1,3,2) + η(2,1,3) + η(2,3,1)

+ η(3,1,2) + η(3,2,1) + η(4,1,1)
)

+ · · · (47)

The four-mode coupling derivatives requires gradients at a
number of points that scales as m3:

N 4MR
EGH = 1 + 2m + 2

(
m

2

)
+ 2

(
m

3

)
(48)

and these can be computed using the following scheme:

ηi jkl = 1

2h3

(
−E (0,0,0,1)

−1,−1,−1,0 + E (0,0,0,1)
−1,−1,0,0 + E (0,0,0,1)

−1,0,−1,0

− E (0,0,0,1)
−1,0,0,0 + E (0,0,0,1)

0,−1,−1,0 − E (0,0,0,1)
0,−1,0,0 − E (0,0,0,1)

0,0,−1,0

+ E (0,0,0,1)
0,0,1,0 + E (0,0,0,1)

0,1,0,0 − E (0,0,0,1)
0,1,1,0 + E (0,0,0,1)

1,0,0,0

− E (0,0,0,1)
1,0,1,0 − E (0,0,0,1)

1,1,0,0 + E (0,0,0,1)
1,1,1,0

)

+ h2

12

(
2η(1,1,3,1) + 3η(1,2,2,1) + 2η(1,3,1,1)

+ 3η(2,1,2,1) + 3η(2,2,1,1) + 2η(3,1,1,1)
)

+ · · · (49)

Note that the formulae for ηi jk and ηi jkl are not symmetric
with respect to the coordinates and, therefore, several alter-
native formulae exist.
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